Compressed Neighbour Discovery using Sparse Kerdock Matrices
نویسندگان
چکیده
We study the network-wide neighbour discovery problem in wireless networks in which each node in a network must discovery the network interface addresses (NIAs) of its neighbour. We work within the rapid on-off division duplex framework proposed by Guo and Zhang in [5] in which all nodes are assigned different on-off signatures which allow them listen to the transmissions of neighbouring nodes during their off slots; this leads to a compressed sensing problem at each node with a collapsed codebook determined by a given node’s transmission signature. We propose sparse Kerdock matrices as codebooks for the neighbour discovery problem. These matrices share the same row space as certain Delsarte-Goethals frames based upon Reed Muller codes, whilst at the same time being extremely sparse. We present numerical experiments using two different compressed sensing recovery algorithms, One Step Thresholding (OST) and Normalised Iterative Hard Thresholding (NIHT). For both algorithms, a higher proportion of neighbours are successfully identified using sparse Kerdock matrices compared to codebooks based on Reed Muller codes with random erasures as proposed in [12]. We argue that the improvement is due to the better interference cancellation properties of sparse Kerdock matrices when collapsed according to a given node’s transmission signature. We show by explicit calculation that the coherence of the collapsed codebooks resulting from sparse Kerdock matrices remains near-optimal.
منابع مشابه
Sparse MIMO Radar with Random Sensor Arrays and Kerdock Codes
We derive a theoretical framework for the recoverability of targets in the azimuth-range-Doppler domain using random sensor arrays and tools developed in the area of compressive sensing. In one manifestation of our theory we use Kerdock codes as transmission waveforms and exploit some of their peculiar properties in our analysis. Not only is our result the first rigorous mathematical theory for...
متن کاملSure independence screening and compressed random sensing
Compressed sensing is a very powerful and popular tool for sparse recovery of high dimensional signals. Random sensing matrices are often employed in compressed sensing. In this paper we introduce a new method named aggressive betting using sure independence screening for sparse noiseless signal recovery. The proposal exploits the randomness structure of random sensing matrices to greatly boost...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملOn the Compressed Measurements over Finite Fields: Sparse or Dense Sampling
We consider compressed sampling over finite fields and investigate the number of compressed measurements needed for successful L0 recovery. Our results are obtained while the sparseness of the sensing matrices as well as the size of the finite fields are varied. One of interesting conclusions includes that unless the signal is “ultra” sparse, the sensing matrices do not have to be dense. Keywor...
متن کاملToeplitz Block Matrices in Compressed Sensing
Recent work in compressed sensing theory shows that n×N independent and identically distributed (IID) sensing matrices whose entries are drawn independently from certain probability distributions guarantee exact recovery of a sparse signal with high probability even if n N . Motivated by signal processing applications, random filtering with Toeplitz sensing matrices whose elements are drawn fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.04537 شماره
صفحات -
تاریخ انتشار 2018